

Proactive Human-Robot Interaction using Visuo-Lingual Transformers and Object Interaction Graphs

Pranay Mathur Georgia Institute of Technology

Humans possess innate ability to extract latent visuo-lingual cues to infer context through observation and human interaction.

Enables proactive prediction of the underlying intention engendering an intuitive method for task agnostic collaboration

Goal: Endow social robots with the ability to reason about the end goal and proactively predict intermediate tasks without hand-crafted triggers which are specific to a scene

Contributions

- End-to-end multimodal transformer architecture ViLing-MMT that uses visual cues from the scene and intermediate task instructions to initiate pro-active behavior
- Incorporating graphical representation of learnt prior objectobject relations in an unsupervised manner

Transformer Encoder-Decoder

on the table. Do you want water. <EOS>

Transformer Encoder

- Lingual instructions represented by a sequence of tokens
- Combined with vision embeddings and object-object interaction graph embedding to create vRL^(t)_{emb}

 $\mathbf{f}_{\theta_{enc}}(\mathbf{w}_{1:N}, \mathbf{I}^{(t)}, M_{n \times n}) = \mathbf{v} \mathbf{R} \mathbf{L}_{emb}^{(t)}$

Evaluation

drink<EOS>

Georgia

h_v(i+1)

h_L(i+1,

Co-attentional Transformer Layer

Method

Vision Encoder

- Incorporate visual context awareness using an encoder based upon the Darknet-53 neural network architecture [1]
- Generate image region features by extracting bounding-boxes and their visual features

- Encoder shares architectural similarities with ViLBERT [3]
 which uses multi-modal streams of data that interact
 through co-attentional transformer layers
- Novel cross-modal key and value communication allows variable individual modality-specific depths and promotes cross-modal connections at various depths

Transformer Decoder

$$\mathbf{p}_{\theta_{enc},\theta_{dec}}(\mathbf{o}_{1:N'}|\mathbf{w}_{1:N},\mathbf{I}^{(t)},M_{n\times n})$$

$$=\prod_{i=1}^{N'} \mathbf{p}_{\theta_{enc},\theta_{dec}}(\mathbf{o}_{i}|\mathbf{o}_{0:i-1},\mathbf{w}_{1:N},\mathbf{I}^{(t)},M_{n\times n})\forall i \in 1,\cdots,N'$$

$$=\prod_{i=1}^{N'} \mathbf{p}_{\theta_{dec}}(\mathbf{o}_{i}|\mathbf{o}_{0:i-1},\mathbf{vRL}_{emb}^{(t)})\forall i \in 1,\cdots,N'$$

• Defines the conditional probability distribution of target sequence given the contextualized encoding sequence

Training

Datasets:

- Flickr8K [4] and MSCOCO [5] for pre-training
- Flickr8K annotations augmented with reference captions

Ablation Studies: Precision, Recall, F1 and BLEU score

	Simulated Scene				
Model	Precision	Recall	F1	BLEU	

 Apply RolAlign pooling to normalize the sizes of feature maps as well as global average pooling (GAP) to reduce the feature representation dimension

Graph Encoder

- Use class occurrences of objects to form a graph encoding historical object-object relations
- Each class c_n is represented as a vertex **v_{cn} ∈ V** , N (V) = **n** and a relation is denoted by an edge
- The weight w_{c1c2} of the edge is a measure of the extent to which the object classes c₁ -c₂ are

and task suggestions along with trigger variable

Loss:

Minimize cross-entropy loss of action triggering and sum of the negative log-likelihood of the word provided in the ground truth description

 $\mathcal{L}_d = -log(p(O_t))$ $\mathcal{L} = \mathcal{L}_{ce}(\hat{i_t}, i_t) + \Sigma_t i_t \Sigma_{i=1}^{N'} \mathcal{L}_d$

	ViLing-MMT-G	0.625	0.667	0.645	0.418		
	ViLing-MMT	0.867	0.813	0.838	0.498		
	Model	Real-World Scene					
		Precision	Recall	F1	BLEU		
	ViLing-MMT-G	0.734	0.734	0.734	0.526		
	ViLing-MMT	0.75	1	0.857	0.566		

Ablation Studies: Precision, Recall, F1 and BLEU score

References

- 1. Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement, 2018.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.
- 3. Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretrain-ing task-agnostic visiolinguistic representations for vision-and-language tasks, 2019
- 4. Micah Hodosh, Peter Young, and Julia Hockenmaier. Framing image description as a ranking task: Data, models and evaluation metrics. Journal of AI Research, 2013
- 5. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Doll ar, and C. Zitnick. Microsoft coco: Common objects in context. 2014
- 6. Y. Xue et al., "Proactive Interaction Framework for Intelligent Social Receptionist Robots," 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi'an, China, 2021

