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Humans possess innate ability to extract latent visuo-lingual cues
to infer context through observation and human interaction.

Enables proactive prediction of the underlying intention
engendering an intuitive method for task agnostic collaboration

Goal: Endow social robots with the ability to reason about the
end goal and proactively predict intermediate tasks without
hand-crafted triggers which are specific to a scene

Contributions

End-to-end multimodal transformer architecture ViLing-MMT
that uses visual cues from the scene and intermediate task
instructions to initiate pro-active behavior

* Incorporating graphical representation of learnt prior object-
object relations in an unsupervised manner
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Co-attentional Transformer Layer

Vision Encoder
* Incorporate visual context awareness using an encoder based
upon the Darknet-53 neural network architecture [1]

 Generate image region features by extracting bounding-boxes
and their visual features

* Apply RolAlign pooling to normalize the sizes of feature maps
as well as global average pooling (GAP) to reduce the feature
representation dimension

Graph Encoder
* Use class occurrences of objects to form a graph encoding
historical object-object relations

* Eachclass c, is represented as a vertexv_, €V, N (V) =nand a
relation is denoted by an edge

* The weight w,, of the edge is a measure of the extent to

which the object classes c, —c, are
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Transformer Encoder-Decoder

Transformer Encoder

* Lingual instructions represented by a sequence of tokens

Combined with vision embeddings and object-object
interaction graph embedding to create vRLY__,
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 Encoder shares architectural similarities with VIiLBERT [3]
which uses multi-modal streams of data that interact
through co-attentional transformer layers

* Novel cross-modal key and value communication allows
variable individual modality-specific depths and promotes
cross-modal connections at various depths

Transformer Decoder
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* Defines the conditional probability distribution of target
sequence given the contextualized encoding sequence

Datasets:
* Flickr8K [4] and MSCOCO [5] for pre-training

* Flickr8K annotations augmented with reference captions
and task suggestions along with trigger variable

Loss:

Minimize cross-entropy loss of action triggering and sum of
the negative log-likelihood of the word provided in the
ground truth description

Lq = —log(p(Oy))
L = ﬁce(zt; Zt) + EtZtE 1£d

Comparison: Precision, Recall and F1
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Ablation Studies: Precision, Recall, F1 and BLEU score

Simulated Scene

ViLing-MMT-G 0.625 0.667 0.645 0.418

ViLing-MMT 0.867 0.813 0.838 0.498
Real-World Scene

ViLing-MMT-G 0.734 0.734 0.734 0.526
ViLing-MMT 0.75 1 0.857 0.566

Ablation Studies: Precision, Recall, F1 and BLEU score
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