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Humans possess innate ability to extract latent visuo-lingual cues 
to infer context through observation and human interaction. 

Enables proactive prediction of the underlying intention 
engendering an intuitive method for task agnostic collaboration

Goal: Endow social robots with the ability to reason about the 
end goal and proactively predict intermediate tasks without 
hand-crafted triggers which are specific to a scene

Motivation

Contributions

Model
Simulated Scene

Precision Recall F1 BLEU

ViLing-MMT-G 0.625 0.667 0.645 0.418

ViLing-MMT 0.867 0.813 0.838 0.498

Model
Real-World Scene

Precision Recall F1 BLEU

ViLing-MMT-G 0.734 0.734 0.734 0.526

ViLing-MMT 0.75 1 0.857 0.566

Vision Encoder
• Incorporate visual context awareness using an encoder based 

upon the Darknet-53 neural network architecture [1] 

• Generate image region features by extracting bounding-boxes 
and their visual features 

• Apply RoIAlign pooling to normalize the sizes of feature maps 
as well as global average pooling (GAP) to reduce the feature 
representation dimension

Graph Encoder
• Use class occurrences of objects to form a graph encoding 

historical object-object relations

• Each class cn is represented as a vertex vcn ∈ V , N (V) = n and a 
relation is denoted by an edge

• The weight wc1c2 of the edge is a measure of the extent to 
which the object classes c1 −c2 are

       wc1c2=
𝑁 𝑐1∩𝑐2

𝑁 𝑐1 ⋅𝑁 𝑐2

Ablation Studies: Precision, Recall, F1 and BLEU score
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Transformer Encoder

• Lingual instructions represented by a sequence of tokens

• Combined with vision embeddings and object-object 

interaction graph embedding to create vRL(t)
emb

• Encoder shares architectural similarities with ViLBERT [3] 

which uses multi-modal streams of data  that interact 

through co-attentional transformer layers

• Novel cross-modal key and value communication allows 

variable individual modality-specific depths and promotes 

cross-modal connections at various depths

Transformer Decoder

• Defines the conditional probability distribution of target 

sequence given the contextualized encoding sequence 

Evaluation

References

Transformer Encoder-Decoder

Datasets: 
• Flickr8K [4] and MSCOCO [5] for pre-training

• Flickr8K annotations augmented with reference captions 
and task suggestions along with trigger variable

Loss:
Minimize cross-entropy loss of action triggering and sum of 
the negative log-likelihood of the word provided in the 
ground truth description

Training

Co-attentional Transformer Layer
Simulated Scenario                              Real-World Scenario

Method

• End-to-end multimodal transformer architecture ViLing-MMT 
that uses visual cues from the scene and intermediate task 
instructions to initiate pro-active behavior 

• Incorporating graphical representation of learnt prior object-
object relations in an unsupervised manner
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